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Abstract—A methodology for the synthesis of a prime mover
is presented, based only on attraction/repulsion of permanent
magnets. The design example is given for a demonstration pro-
totype that has the potential to unfold, in theory, the sustainable
generation of 22W mechanical power at 1000 rpm and beyond.

I. INTRODUCTION

There are quite a few methods for the description of mag-
netic forces as created by permanent magnets (PMs) [1]. How-
ever, although all the approaches converge to the same values
in what concerns the global forces between PMs, the derived
local forces are fundamentally different, implying that force
density in each approach is rather a mathematical abstraction
without necessarily a physical meaning [2]. Otherwise stated,
consensus about a method for the accurate calculation of
torques between PMs in close proximity is not found in the
literature, and validation of results by experimental measure-
ments are unavoidable [3], [4].

A commonly considered tool for modeling PMs consists on
calculating magnetic forces among filamentary current loops
[6]. It is asserted in [7], on account of analytical equations
starting from the Lorentz Force law, that a constrained dis-
placement of an arrangement of filamentary current loops adds
excess mechanical energy to the system moving parts, as long
as the currents in the loops are kept constant during the closed
translational orbit, and the global magnetic forces between
loops are assumed to act on the loop geometric centers.

Further, as [8] vindicates, it is also possible to obtain similar
results to [7] by another calculation approach, namely the
numerical solution of Maxwell stress tensors through FEM
software. The outcomes in [8] seemingly lead to energy excess
under constrained translational trajectories of PMs.

In order to pave the way for experimental verification of the
provocative theoretical expectations above, this article presents
the analysis and design of a first-principles-first prototype,
idyllically denominated a magnetic-wind mill, being devised
as the aggregation of simple prime-mover cells based on PMs.
The magnets are modeled as the superposition of filamentary
loops with constant current, and the global forces are assumed
to push the ”center of mass” of the loops, as in [7]. In the
Appendix, equivalent results are illustrated when the global
forces are considered to act on the ”center of field heaviness”
of the loops.

Accordingly, the intention in the following sections is to
project a device wherein the elementary cells operating to-
gether create a persistent smooth torque, sufficient to deploy
enough sustainable mechanical energy for conclusive mea-
surements. The methodology developed hereinafter details the
necessary analysis tools for this purpose. The design of a
small mill is presented, aiming at generating about 22W when
rotating at 1000 rpm. Future experiments are planned to con-
firm or invalidate the feasibility of these apparently hopeless
theoretical statements. The motivation why is considered in
Section VI.

II. ELEMENTARY PRIME-MOVER CELL

The concept for an initial source of motive power is shown
in Fig. 1. The gearing (this case cog-wheels), assembled to-
gether with the rotors in spinning shafts, impose a constrained
translation for the permanent magnets. The resulting attrac-
tion/repulsion forces among the magnets during the transla-
tional displacement lead to asymmetric torque characteristics,
as shown in the sequence. A consequence of this is that, in
theory, a modular structure with stacked prime-mover cells
sharing the same shafts yields the sustainable generation of
mechanical energy.

III. ASYMMETRIC TORQUE CHARACTERISTICS

A. Modeling of a permanent magnet

The magnetic dipole is the fundamental element of mag-
netism. It can be thought as a small current loop with dipole
moment ~m [Am2]. Statistically, one can speak about a net
magnetization ~M [A/m], representing the limit ratio of dipole
moments per volume of magnetic material.

Contrary to the behavior of ferromagnetic materials, in a PM
with homogeneous and uniform magnetization, there is barely
interaction of the magnetic dipoles with an externally applied
magnetic field. The magnetization is practically constant up to
a high level of external coercive field, found to be [1]

~M =
~Br
µ0
, (1)

where ~Br[T ] is the so-called remanent magnetic flux density
of the material, and µ0 = 4π × 10−7[H/m] the permeability
of free space.

With regard to a PM specimen with cylindrical shape, like
in Fig. 2, an analytical modeling technique is possible by
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Fig. 1: Elementary prime-mover cell, consisting of (a) two
rotors with embedded permanent magnets (PMs) and fixed gap
separation (γ0), and (b) a common gear mechanism, namely
1:1 cog-wheels. The angular misalignment between the rotors
(φ0) is kept constant by the gears in spite of rotation.
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Fig. 2: Method to approximate the magnetic field created by
a cylindrical PM with remanent flux density Br as the super-
position of the magnetic field engendered by n` filamentary
current loops with separation h` between loops.

assuming a fictitious magnetic surface current density on the
magnet surface, given by

~JM = ~M × ~n [A/m], (2)

where ~n is a unity vector normal to the cylindrical surface.
So, for a magnet with height H, the total equivalent mag-

netizing current on the surface is found to become

IM =

∫
H
JM dh = HBr/µ0 [A]. (3)

For expedient evaluation of magnetic forces through an
analytical approach, the surface current in (3) is split and
lumped in n` circular current loops with separation h` between
loops, as shown in Fig. 2. The resulting force between magnets
is then calculated as the superposition of the forces among all
the equivalent current loops.

B. Current loops with constrained displacement

Two filamentary circular current loops with inner radii R1

and R2 and constant currents I1 and I2, respectively, are
shown in Fig. 3, centered at points C1 and C2. The loop centers
may translate with constant radius, r1 and r2, around the pivot
points P1 and P2, such that C1, C2, P1 and P2 remain in the
same plane. By given a compulsory relationship for the radial
angles φ1 and φ2, a constrained joint trajectory for the loops is
obtained. For the purpose of analysis, convenient orthogonal
vector reference frames are designated in Fig. 3.

C. Reference frames

Fig. 4 illustrates the unity vectors in Fig. 3 in a frontal
perspective with regard to the translation plane, showing
clearly that the unity vectors ~an1 and ~an2 are normal to the
corresponding current loop planes.

For ease of analysis, orthogonal reference frames in Figs. 3
and 4 are defined as

~axj = ~ayj × ~azj , ~ayj = ~azj × ~axj ,~azj = ~axj × ~ayj ,
~atj = ~a`j × ~anj , ~a`j = ~anj × ~atj ,~anj = ~atj × ~a`j ,
with j = {1, 2} and (4)
~ax2 = −~ax1, ~ay2 = −~ay1, ~az2 = ~az1,

~a`2 = −~a`1, ~a`1 = ~ay2 ,

where ’×’ denotes vector cross product.
On account of the sign convention for the radial angles φ1

and φ2 in Fig. 4, the transformations between reference frames
follow from[
~atj
~anj

]
=

[
− sinφj cosφj
cosφj sinφj

] [
~axj
~azj

]
, j = {1, 2};[

~axj
~azj

]
=

[
− sinφj cosφj
cosφj sinφj

] [
~atj
~anj

]
, j = {1, 2};[

~ati
~ani

]
=

[
sinφi cosφi
− cosφi sinφi

] [
~axj
~azj

]
, i, j = {1, 2 ; 2, 1};(5)[

~axi
~azi

]
=

[
sinφj − cosφj
cosφj sinφj

] [
~atj
~azj

]
, i, j = {1, 2 ; 2, 1};[

~ati
~ani

]
=

[
cosφij sinφij
sinφij − cosφij

] [
~atj
~anj

]
, i, j = {1, 2 ; 2, 1};
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Fig. 3: Filamentary current loops with angular misalignment. The loops translate on the same plane with constant radii around
fixed pivot points.
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Fig. 4: Orthogonal vector reference frames from Fig. 3 shown
in a frontal perspective.

with

φ12 = φ21 = φ1 + φ2 . (6)

It is also assumed in Fig. 4 that the sum r1 + γ + r2 is
constant, being equal to

r1 + γ + r2 = Σ0 = r02 + γ0 + r01, (7)

where r1 ≤ r01, r2 ≤ r02, γ ≥ γ0, with r01, r02, γ0 defined
in Fig. 1.

As an example of frame transformation, the vector linking
the loop centers C1 to C2,

~C21 = r2~an2 + Σ0~ax1 − r1~an1 ,

~C21 =
[
r2 cosφ2 r2 sinφ2

] [~ax2

~az2

]
+
[

Σ0 0
] [~ax1

~az1

]
+

+
[
r1 cosφ1 r1 sinφ1

] [~ax1

~az1

]
,

when referenced to (~at1,~an1), can be found from (5) as

~C21 = − (Σ0 sinφ1 − r2 sinφ12)~at1

+ (Σ0 cosφ1 − r2 cosφ12 − r1)~an1. (8)
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Fig. 5: Force pairs as created by magnetic repulsion/attraction
between current loops constrained by cog-wheels. The forces
are assumed to act on the loop geometric centers.

D. Static forces and torques

Fig. 5 illustrates a static situation, showing the magnetic
forces on the current loops in Fig. 3 when a gearing such as
cog-wheels is applied. The loop centers are located at

~C1 = r1 ~an1 and ~C2 = r2 ~an2 (9)

relatively to the pivot points P1 and P2, respectively. Point
G is fixed in space and lies at the interface contact between
sides of the cog-wheels in Fig. 1, the gearing having also pivot
points at P1 and P2 and constant radii rg1 and rg2, with gear
ratio ρ21 = rg2/rg1 = 1 . Also note, with regard to Fig.4 and
(7), that rg1 + rg2 = Σ0.

The resulting magnetic forces actuating on the current loops,
~F1 and ~F2, form a repulsion/attraction pair, that is,

~F1 + ~F2 = 0. (10)

These global forces originate from the integration of magnetic
forces on incremental current loop segments, and can be
determined following the approach in [6] (also detailed in
[7]). For ease of derivation, it is convenient to consider the
total force ~F2 on loop #2, which is a consequence of current
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circulation through loop #1, with reference to a vectorial frame
placed on loop #1 as

~F2 = Ft21 ~at1 + Fn21 ~an1, (11)

since Ft21 ≡ Ft21(φ1, φ2),Fn21 ≡ Fn21(φ1, φ2) may be then
determined by purely analytical equations. Eventually, when
necessary to consider ~F2 with reference to a frame placed on
loop #2 as

~F2 = Ft2 ~at2 + Fn2 ~an2, (12)

it results from (4) and (11) that

~F2 =
[
Ft21 Fn21

] [~at1
~an1

]
,

~F2 =
[
Ft21 Fn21

] [cosφ12 sinφ12

sinφ12 − cosφ12

] [
~at2
~an2

]
,

leading to

Ft2 = Ft21 cosφ12 + Fn21 sinφ12, (13)
Fn2 = Ft21 sinφ12 −Fn21 cosφ12 . (14)

Similarly, the total force ~F1 exerted on loop #1 due to current
circulation through loop #2 is referenced to a frame placed on
loop #1 as

~F1 = Ft1 ~at1 + Fn1 ~an1 . (15)

Thereby, from (10), (11) and (15) follows

Ft1 = −Ft21 & Fn1 = −Fn21 . (16)

Once Ft21(φ1, φ2),Fn21(φ1, φ2) are known, under the sup-
position that the magnetic forces are concentrated on the
geometric loop centers (more about that in Section VI), the
associated torques in Fig. 5 can be readily described. For
instance, the resulting torque ~T2 around the pivot point P2

is given by

~T2 = ~C2 × ~F2 − ρ21

(
~C1 × ~F1

)
, or (17)

~T2 = −T2(φ1, φ2)~ay2, (18)

where ρ21 = rg2/rg1 is the gear ratio. The minus sign in (18)
has been introduced for later display convenience, indicating
that ~T2 acts in the c.c.w. direction when T2(φ1, φ2) > 0.
Combining (9), (11), (15) and (17), after some manipulations
it is found that in (18)

T2(φ1, φ2) = (r2 cosφ12 − ρ21r1)Ft21 + (r2 sinφ12)Fn21

(19)
When φ1 and φ2 are constrained as

φ1 = ρ21θ & φ2 = θ + φ0 with θ =

∫
dθ , (20)

it is shown in the following section that, for a special choice
of parameters,

〈T2〉 =
1

2π

∫ 2π

0

T2(φ1, φ2) dθ 6= 0 . (21)

Otherwise stated, the average torque 〈T2〉 can be rendered
asymmetric [8].

Fig. 6: Calculated static torque characteristics of a prime-
mover cell with just one PM at each rotor (but keeping the
radial misalignment φ0 = −5o between rotors, see Fig. 1).
The magnets are modeled by sets of n` current loops and
corresponding separation h` between loops (as in Fig. 2).

IV. LAYOUT OF THE MILL

Taking into account the parameters in Table I, Fig. 6 depicts
the resulting asymmetric torque profile of the prime-mover cell
with only one PM per rotor (instead of 3 magnets shifted by
120o as in Fig. 1). For the sake of comparison the PMs are
modeled with different number of current loops n`, and salient
numerical results are given in Table II.

TABLE I: Mill parameters and geometrical dimensions

Parameter Value Description Fig.
r01 [mm] 21.0 outer radius rotor #1
r02 [mm] 30.0 outer radius rotor #2
rg1 [mm] 26.0 outer radius gear at side #1 (1)
rg2 [mm] 26.0 outer radius gear at side #2
γ0 [mm] 1.0 gap between rotors
φ0 [deg] −5o angle shift between rotors
R [mm] 5.0 radius cylindrical PM
H [mm] 3.0 height cylindrical PM
Br [T] 1.45 remanent flux density (NdFeB N52)
IM [kA] 3.5 surface Amperian current (2)
n` [-] 4 number of equivalent loops
h` [mm] 0.60 separation between loops
I [kA] 0.88 current in filamentary loop
I1 [kA] 0.88 current in loop #1
I2 [kA] 0.88 current in loop #2 (3)
R1 [mm] 5.0 radius loop #1
R2 [mm] 5.0 radius loop #2
nc [-] 8 number of stacked cells (9)
hc [mm] 12.0 vertical separation between rotors

It is possible to conclude from the outcomes in Table II that
only marginal improvement in the numerical values can be
expected for n` > 4. Therefore, in the sequence it is assumed
n` = 4 in all calculations. Also note in Fig. 6 and from the
results in Table II a positive average torque systematically
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(a) (b)

Fig. 7: (a) Calculated average torque of a prime-mover cell as function of the misalignment φ0 between rotors. (b) As expected
from the cell symmetry (Fig. 1), the pattern in (a) repeats at intervals of 60o. The maximum occurs for −6o ≤ φ0 ≤ −5o.
The dotted trace in (a) refers to the mean torque of a simplified cell (Fig. 6 with n` = 4).

TABLE II: Torque values in Fig. 6

n` [-] 1 2 3 4 # equiv loops
h` [mm] 1.50 1.00 0.75 0.60 loop separation
〈T2〉 [m Nm] 1.274 1.395 1.463 1.506 mean torque
Tpeak
2 [m Nm] 109.4 115.8 119.6 122.1 peak torque

arises. For instance, considering φ0 = −5o, it follows from
(21) that

〈T2〉0 = 1.506mNm ≈ 1.2%T peak
2 . (22)

In Section VI this result is considered to be significant.
The choice for φ0 = −5o in Fig. 6 has been decided in

view of the local maxima in Fig. 7, where the mean torque
as function of φ0 is shown when a complete prime-mover
cell with 3 PMs per rotor is considered. The detailed torque
characteristics get the repeated pattern as depicted in Fig.8,
where, again, φ0 = −5o.

In Fig. 8 the average torque on the shaft becomes three
times higher compared to Fig. 6, because the torque signals
due to the shifted PM-pairs in Fig. 1 do not overlap. That is
to say,

〈T2〉nc=1 = 3 · 〈T2〉0 = 4.52mNm. (23)

Nevertheless, the form factor of the torque signal is still quite
poor. By stacking prime-mover cells in the same shafts as show
in Fig. 9, with a suitable angle shift between rotors (multiples
of 45o when nc = 8), a smooth average torque is the outcome
(red trace in Fig. 8), with mean value given by

〈T2〉nc=8 = 8 · 〈T2〉nc=1 = 36.2mNm (24)

(see also Table III). It can be shown that above a minimum
required value for cell height (hc = 12mm for 2R = 10mm),
the vertical separation between stacked rotors barely impacts
the torque created by the individual cells.

Fig. 8: Static torque profile of a prime-mover cell with 3 PM
per rotor (nc = 1, continued trace), and net torque profile (red
trace) when stacking multiple prime-mover cells (nc = 8 and
hc = 12mm) as sketched in Fig. 9. The dotted trace refers to
the torque profile of a simplified cell (see Fig. 6.)

TABLE III: Torque values in Fig. 8

nc [-] 1 8 # cells
hc [mm] - 12.0 cell separation
〈T2〉 [m Nm] 4.52 36.2 net mean torque
Tpeak
2 [m Nm] 122.1 40.9 peak torque

Aiming at maximizing the utilization of materials, it is
opportune to interleave batteries of stacked prime-mover cells
for sharing PMs, as sketched in Fig. 10, resulting a complete
magnetic-wind mill. Calculations confirm that the average
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Fig. 9: Layout aiming at engineering a magnetic-wind mill
that yields smooth and persistent average torque on the basis
of a battery of stacked prime-mover cells.

torque created by the extra force interaction among all PMs
located in the 6 cylinders at the periphery of the mill is zero.
Consequently, the final average torque on the central axis in
Fig. 10 is just

〈T2〉nc=48 = 6 · 〈T2〉nc=8 = 0.217Nm. (25)

The resulting torque profile is depicted in Fig. 11.
Altogether, when the central cylinder of the mill is rotating

with constant radial velocity Ω2, the average mechanical power
that can be drawn from the spinning axis is found from (25)
to become

P2 = Ω2 · 〈T2〉nc=48 . (26)

For instance,

Ω2 = 1000 rpm → P2 = 22W. (27)

It is worthwhile to remark that P2 in (26) increases propor-
tionally with Ω2, since 〈T2〉 in (25) is found to be constant,
being ideally independent of the rotational speed of the shaft,
as justified in the next section.

V. A MAGNETIC-WIND MILL IN THE FIELD

Although the results in Fig. 11 have relation to a static situ-
ation, the torque signals may be considered without change in

Ω1

Ω1

Ω3

Ω3

Ω3

Ω1

φ0

φ0

φ0

Ω2

〈T2〉

60o

60o

60o

(a) Top view

Ω3

Ω2

Ω1
〈T2〉

(b) Frontal view

Fig. 10: Layout of a magnetic-wind mill with six interleaved
bateries sharing stacked prime-mover cells, for the purpose
of maximizing the utilization of the PMs. Note the subtle
placement of the cog-wheels.

practical dynamic conditions. Since high-quality PM materials
have a low relative permeability (µr ≈ 1.03−1.05 for sintered
NdFeB) [1], the internal magnetization, ~M as given in (1), is
practically not affected by the proximity of another PM with
similar characteristics.

Moreover, in view of the extremely low radial speeds in
mechanical devices (as the one in Fig. 10) compared to the
spreading velocity of EM waves in space, the dynamic regime
of the net magnetic field can be considered as quasi-stationary
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Fig. 11: Net torque characteristics of the mill sketched in
Fig. 10, assembled with 6 interleaved batteries sharing prime-
mover cells. The dotted trace refers to the net torque of just
one battery as in Fig. 9.

(i.e. virtually instantaneous EM wave propagation).
Hence, from a modeling point-of-view, the currents through

the filamentary loops may be assumed to remain constant,
independent of the proximity of other loops, even under
variable external magnetic flux. The only postulation is that
µr = 1 in- and outside the PMs.

Bearing in mind the construction of a laboratory prototype
for experimental verification, Fig. 12 shows sketches of consti-
tuting parts for assembling a magnetic wind mill to operate in
the field. It is expected that the maximum power that can be
unfolded with the device will be limited by the vibrational
stability of the mechanical part and by the induced eddy
currents in the PM materials.

The PM magnetization, as such, is not directly impacted by
electromotive forces (EMF) as induced by a time-changing
magnetic flux due to the translation of neighbor PMs in
the surrounding space. Nevertheless, by its turn this induced
emf will produce eddy currents, therefore losses, in the PM
material.

Magnet losses are usually neglected for plastic bonded
or ferrite PMs, due to their quite high material resistivity.
However, the resistivity of rare-earth magnetic materials (like
NdFeB) is much lower, and eddy-current losses may increase
the PM temperature to a point that the remanent magnetic flux
density is noticeably affected, decreasing the PM performance
as a consequence, as it is the case in high-speed PM motors
[9].

VI. DISCUSSION

Already from the beginning of the 19th century, a well-
accepted model for describing the behavior of PMs can be
obtained by means of constant electric currents circulating on
the external surface of the magnetic material, the so-called
Amperian currents in (3). These imaginary superficial currents

Fig. 12: Impression of mechanical parts for a mill prototype

are the macroscopic equivalent representation of the micro-
scopic atomic activity of the internal particles of the material.
In this way, the magnetic field as created by (a superposition
of) filamentary current loops with constant current is generally
accredited as a simple, yet quite effective, model for the
global behavior of a PM, for which the magnetisation in (1)
is constant all over the magnetic material.

Other PM modeling approaches for force derivation (equiv-
alent magnetic charges, surface or volume integration of
Maxwell stress tensors, scalar or vectorial formulation of
virtual work principle) are also extensively used. In these
representations, the formulas for calculation the total forces
between PMs are quite accurate, irrespective the adopted
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approach. However, all above methods are only globally
equivalent and do not represent the actual distribution of forces
in the magnetic material, leading to specific and dissimilar
results for local force density on and inside the permanent
magnets [2].

It is illustrative to note the discrepancies between calcu-
lated results from different methods as compared to accurate
measurements. A systematic and significant mismatch in the
calculated torque values can be clearly observed [3,Figs.3-4]
[4,Fig.5], in striking contrast with the ease of obtaining precise
match for calculated global magnetic forces [3,Fig.5] [5,Fig.6].

Considering the two current loops in Fig. 3 as equivalent
Amperian currents in PMs, it can be proven that, if the
total torque on the loops is determined by the integration of
magnetic forces actuating on local incremental loop segments,
the resulting average torque per revolution is found to become
zero. Though, the spacial position of the loop segments on the
PM surfaces is a mathematical abstraction without physical
meaning. Therefore, an appealing research question would be
to try developing methods to describe total torques based
on global magnetic forces, since the global forces can be
accurately calculated quite well.

In the previous sections, a derivation attempt has been done
by placing the global magnetic force acting on the current
loop geometric center, what could be seen as averaging the
force components on the ”center of mass” of the magnetic
material confined by the loop. Another possibility is described
in the Appendix, where the global force is placed at the central
point of the region in the loop with the highest magnetic flux
density, so-called the ”center of field heaviness” inside the
magnetic material confined by the current loop. The magnetic
flux density created by current loops at arbitrary points in
space can be readily and precisely calculated.

Both approaches yield similar results and bring about the
challenging outcome of having the average torque per revolu-
tion not equal to zero (average torque around 1% of the peak
torque value). That is to say, the tentative methods theoretically
forecast the release of usable mechanical energy.

So, the prognostic of (41) and (42) asserts that a constrained
translation of PMs (modeled as a superposition of linear
loops with constant current and global forces actuating not
necessarily on imaginary charges) will deploy sustainable
energy from the sources that keep the Amperian currents
constant during the trajectory. As such, the source of energy
that keeps going on the microscopic atomic activity in a PM,
is the same source that delivers the excess energy at every
revolution of the current loops, without recurrence to any
further assumption.

In Sec. 4 of [7] an interpretation is given for the energy
source that propels the microscopic activity of the internal
particles in a PM, resorting to elementary notions from Quan-
tum Electrodynamics. Nevertheless, aiming at an engineer-
ing project the supposition of constant Amperian currents is
enough for designing and assembling prototypes.

VII. CONCLUSION

A methodology for calculating global torques between PMs
in close proximity is presented, being based not on incremental

but global forces, avoiding in this way to assert a physi-
cal interpretation for imaginary currents. The model attempt
leads to energy excess, allowing the portrayal of elementary
prime-mover cells with PMs only. Subsequently, these cells
are stacked to form batteries, and after that, batteries are
interleaved to construct a mill in such a way that significant
and persistent torque develops on the shaft to perform useful
work. The next mandatory step to clarify the defiant theoretical
outcomes will be, of course, to assemble a prototype with
enough dexterity for conclusive experimental verification.

APPENDIX

Consider in Fig. 3 an arbitrary point ~D2 at the internal
surface of current loop #2, with

~D2 = u~at2 + v~a`2 , (28)

where −R2 ≤ u ≤ R2 and −R2 ≤ v ≤ R2.
With respect to the reference frame placed at the geometric

center of loop #1, it follows from (8) that

~D21 = ~C21 + ~D2 . (29)

After some manipulations, the components of ~D21 are found
to become

~D21 = x~at1 + y~a`1 + z ~an1 ,where (30)
x = u cosφ12 + r2 sinφ12 − Σ0 sinφ1 ,

y = −v ,
z = u sinφ12 − r2 cosφ12 + Σ0 sinφ1 − r1 .

The magnitude of the magnetic flux density ~B21, as induced
by current loop #1 at point ~D21, can be calculated from [10]

‖B21‖(u, v) =
√
B2
ρ +B2

z (31)

with

Bρ =
µ0 I1 k z

4π
√
R1ρ

−K +
(
R2

1 + ρ2 + z2
)
E

(R2
1 − ρ)2 + z2

, (32)

Bz =
µ0 I1 k

4π
√
R1ρ

K +
(
R2

1 − ρ2 − z2
)
E

(R2
1 − ρ)2 + z2

, (33)

and

ρ =
√
x2 + y2 , (34)

k2 =
4R1 ρ

(R1 + ρ)2 + z2
, k =

√
k2 , (35)

K =

∫ π/2

0

1√
1− k2 sin2 ξ

dξ,

E =

∫ π/2

0

√
1− k2 sin2 ξ dξ . (36)

As a consequence of the intensity variations of (31) at each
set of angular positions φ1 and φ2, the central point (~Γ2) of
the region with the highest magnetic field magnitude, circum-
scribed by the surface of loop #2, has changing coordinates
uΓ2, vΓ2 given by

~Γ2 = uΓ2 ~at2 + vΓ2 ~a`2 + r2 ~an2 , (37)
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where

uΓ2 =

∫ R2

−R2

∫ √R2
2−u2

−
√
R2

2−u2

u‖B21‖(u, v)dv du

∫ R2

−R2

∫ √R2
2−u2

−
√
R2

2−u2

‖B21‖(u, v)dv du

(38)

and, due to symmetry, vΓ2 ≡ 0. Similarly, it is possible to
write for loop #1 that

~Γ1 = uΓ1 ~at1 + vΓ1 ~a`1 + r1 ~an1 , (39)

Fig. 13 illustrates the variation range of uΓ1 and uΓ2 as
function of the current loop rotation in Fig. 3. Circa ±40%
displacement around the loop centers is found.

So, the vectors ~C2 and ~C1 defined in (9) could be interpreted
as pointing to the ”center of mass” of the current loops,
while ~Γ2 in (37) and ~Γ1 in (39) point to the ”center of field
heaviness” of the loops, respectively. In this sense, it is to
expect that, within the volume of PM material, the regions
with higher magnetic field intensity are associated with higher
force densities. Therefore, instead of (17) where

~T2 = ~C2 × ~F2 − ρ21

(
~C1 × ~F1

)
,

an alternative moment arm for calculating the resulting torque
~T2 around the pivot point P2 is given by

~T2 = ~Γ2 × ~F2 − ρ21

(
~Γ1 × ~F1

)
. (40)

Fig. 14 depicts the resulting asymmetric static torque profile
when using (40), for which holds

〈T2〉 = 1.061mNm and T peak
2 = 106.4mNm. (41)

The results are quite close to the torque signal calculated with
(17), also shown for comparison in Fig. 14, where

〈T2〉 = 1.274mNm and T peak
2 = 109.4mNm. (42)

In both cases 〈T2〉 ≈ 1.0%T peak
2 6= 0 !
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